Five Sensors Real-Time with Pulsar and Python on a Pi (FLiP-Py-Pi-BreakoutGarden)

FLiP-Pi-BreakoutGarden

FLiP-Py

The easy way to build Python streaming applications from the edge to cloud.

Gear / Hardware

  • Raspberry Pi 3 Model B Rev 1.2, Bullseye Raspian, armv71
  • Pimoroni Breakout Garden Hat
  • 1.12" Mono OLED Breakout 128x128 White/Black Screen
  • BME680 Air Quality, Temperature, Pressure, Humidity Sensor
  • LWM303D 6D0F Motion Sensor (X, Y, Z Axes)
  • BH1745 Luminance and Color Sensor
  • LTR-559 Light and Proximity Sensor 0.01 lux to 64,000 lux
  • VL53L1X Time of Flight (TOF) Sensor

Device

Software / Libraries

  • Python 3.9
  • Pulsar Python Client 2.10 (avro) pip3 install pulsar-client[avro]
  • Python Breakout Garden
  • Python PSUTIL https://pypi.org/project/psutil/
  • Python LUMA OLED pip3 install --upgrade luma.oled
  • Libraries sudo apt-get install python3 python3-pip python3-pil libjpeg-dev zlib1g-dev libfreetype6-dev liblcms2-dev libopenjp2-7 libtiff5 -y

Architecture

StreamOps

bin/pulsar-admin topics create "persistent://public/default/pi-sensors"

Device Running

VL53L0X_GetDeviceInfo:
Device Name : VL53L1 cut1.1
Device Type : VL53L1
Device ID : 
ProductRevisionMajor : 1
ProductRevisionMinor : 15
{'_required_default': False, '_default': None, '_required': False, 'uuid': 'snr_20220323200032', 'ipaddress': '192.168.1.229', 'cputempf': 99, 'runtime': 154, 'host': 'piups', 'hostname': 'piups', 'macaddress': 'b8:27:eb:4a:4b:61', 'endtime': '1648065632.645613', 'te': '154.00473523139954', 'cpu': 0.0, 'diskusage': '3895.3 MB', 'memory': 21.5, 'rowid': '20220323200032_6a66f9ea-1273-4e5d-b150-9300f6272482', 'systemtime': '03/23/2022 16:00:33', 'ts': 1648065633, 'starttime': '03/23/2022 15:57:58', 'BH1745_red': 112.2, 'BH1745_green': 82.0, 'BH1745_blue': 63.0, 'BH1745_clear': 110.0, 'VL53L1X_distance_in_mm': -1185.0, 'ltr559_lux': 6.65, 'ltr559_prox': 0.0, 'bme680_tempc': 23.6, 'bme680_tempf': 74.48, 'bme680_pressure': 1017.48, 'bme680_humidity': 33.931, 'lsm303d_accelerometer': '-00.08g : -01.00g : +00.01g', 'lsm303d_magnetometer': '+00.06 : +00.30 : +00.07'}
VL53L1X Start Ranging Address 0x29

Consumer


bin/pulsar-client consume "persistent://public/default/pi-sensors" -s "pisnsrgrdnrdr" -n 0


** SQL Consumers **

Pulsar SQL / Presto/Trino


desc pulsar."public/default"."pi-sensors";

         Column         |   Type    | Extra |                                   Comment                                   
------------------------+-----------+-------+-----------------------------------------------------------------------------
 uuid                   | varchar   |       | ["null","string"]                                                           
 ipaddress              | varchar   |       | ["null","string"]                                                           
 cputempf               | integer   |       | ["null","int"]                                                              
 runtime                | integer   |       | ["null","int"]                                                              
 host                   | varchar   |       | ["null","string"]                                                           
 hostname               | varchar   |       | ["null","string"]                                                           
 macaddress             | varchar   |       | ["null","string"]                                                           
 endtime                | varchar   |       | ["null","string"]                                                           
 te                     | varchar   |       | ["null","string"]                                                           
 cpu                    | real      |       | ["null","float"]                                                            
 diskusage              | varchar   |       | ["null","string"]                                                           
 memory                 | real      |       | ["null","float"]                                                            
 rowid                  | varchar   |       | ["null","string"]                                                           
 systemtime             | varchar   |       | ["null","string"]                                                           
 ts                     | integer   |       | ["null","int"]                                                              
 starttime              | varchar   |       | ["null","string"]                                                           
 bh1745_red             | real      |       | ["null","float"]                                                            
 bh1745_green           | real      |       | ["null","float"]                                                            
 bh1745_blue            | real      |       | ["null","float"]                                                            
 bh1745_clear           | real      |       | ["null","float"]                                                            
 vl53l1x_distance_in_mm | real      |       | ["null","float"]                                                            
 ltr559_lux             | real      |       | ["null","float"]                                                            
 ltr559_prox            | real      |       | ["null","float"]                                                            
 bme680_tempc           | real      |       | ["null","float"]                                                            
 bme680_tempf           | real      |       | ["null","float"]                                                            
 bme680_pressure        | real      |       | ["null","float"]                                                            
 bme680_humidity        | real      |       | ["null","float"]                                                            
 lsm303d_accelerometer  | varchar   |       | ["null","string"]                                                           
 lsm303d_magnetometer   | varchar   |       | ["null","string"]                                                           
 __partition__          | integer   |       | The partition number which the message belongs to                           
 __event_time__         | timestamp |       | Application defined timestamp in milliseconds of when the event occurred    
 __publish_time__       | timestamp |       | The timestamp in milliseconds of when event as published                    
 __message_id__         | varchar   |       | The message ID of the message used to generate this row                     
 __sequence_id__        | bigint    |       | The sequence ID of the message used to generate this row                    
 __producer_name__      | varchar   |       | The name of the producer that publish the message used to generate this row 
 __key__                | varchar   |       | The partition key for the topic                                             
 __properties__         | varchar   |       | User defined properties                                                     
(37 rows)

presto> select * from pulsar."public/default"."pi-sensors";
        uuid        |   ipaddress   | cputempf | runtime | host  | hostname |    macaddress     |      endtime       |         te         | cpu | disk
--------------------+---------------+----------+---------+-------+----------+-------------------+--------------------+--------------------+-----+-----
 snr_20220323180318 | 192.168.1.229 |       99 |       4 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058598.8543017 | 4.47935152053833   | 0.2 | 3895
 snr_20220323180324 | 192.168.1.229 |       99 |      10 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058604.4054732 | 10.03052306175232  | 0.0 | 3895
 snr_20220323180329 | 192.168.1.229 |       99 |      16 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058609.8929565 | 15.518006324768066 | 6.5 | 3895
 snr_20220323180335 | 192.168.1.229 |       99 |      21 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058615.3783045 | 21.00335431098938  | 0.2 | 3895
 snr_20220323180340 | 192.168.1.229 |       99 |      26 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058620.8675282 | 26.49257802963257  | 4.6 | 3895
 snr_20220323180346 | 192.168.1.229 |       99 |      32 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058626.3639522 | 31.989001989364624 | 0.0 | 3895
 snr_20220323180351 | 192.168.1.229 |       99 |      38 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058631.8793604 | 37.50441026687622  | 0.0 | 3895
 snr_20220323180357 | 192.168.1.229 |      100 |      43 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058637.38347   | 43.008519887924194 | 0.0 | 3895
 snr_20220323180402 | 192.168.1.229 |       99 |      49 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058642.8820572 | 48.50710701942444  | 0.0 | 3895
 snr_20220323180408 | 192.168.1.229 |       99 |      54 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058648.3795574 | 54.00460720062256  | 6.2 | 3895
 snr_20220323180413 | 192.168.1.229 |       99 |      59 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058653.8280468 | 59.45309662818909  | 0.0 | 3895
 snr_20220323180419 | 192.168.1.229 |       99 |      65 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058659.3180714 | 64.94312119483948  | 4.9 | 3895
 snr_20220323180424 | 192.168.1.229 |       99 |      70 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058664.8023574 | 70.42740726470947  | 0.0 | 3895
 snr_20220323180430 | 192.168.1.229 |       99 |      76 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058670.286937  | 75.91198682785034  | 0.0 | 3895
 snr_20220323180435 | 192.168.1.229 |       97 |      81 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058675.7804654 | 81.40551519393921  | 0.0 | 3895
 snr_20220323180441 | 192.168.1.229 |       99 |      87 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058681.2751634 | 86.90021324157715  | 0.0 | 3895
 snr_20220323180446 | 192.168.1.229 |       99 |      92 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058686.7713509 | 92.39640069007874  | 5.9 | 3895
 snr_20220323180452 | 192.168.1.229 |       99 |      98 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058692.2672575 | 97.89230728149414  | 0.3 | 3895
 snr_20220323180457 | 192.168.1.229 |       99 |     103 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058697.7704427 | 103.39549255371094 | 5.4 | 3895
 snr_20220323180503 | 192.168.1.229 |       99 |     109 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058703.21333   | 108.83837985992432 | 0.3 | 3895
 snr_20220323180508 | 192.168.1.229 |       99 |     114 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058708.6879904 | 114.31304025650024 | 0.0 | 3895
 snr_20220323180514 | 192.168.1.229 |       99 |     120 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058714.1396198 | 119.76466965675354 | 0.3 | 3895
 snr_20220323180519 | 192.168.1.229 |       99 |     125 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058719.6158638 | 125.24091362953186 | 0.0 | 3895
 snr_20220323180525 | 192.168.1.229 |      100 |     131 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058725.0950723 | 130.72012209892273 | 6.5 | 3895
 snr_20220323180530 | 192.168.1.229 |       99 |     136 | piups | piups    | b8:27:eb:4a:4b:61 | 1648058730.57256   | 136.19760990142822 | 0.0 | 3895
(25 rows)

Query 20220323_184946_00003_p66fs, FINISHED, 1 node

PULSARSQL

PULSARSQL

PULSARSQL

Spark SQL

val dfPulsar = spark.readStream.format("pulsar").option("service.url", "pulsar://pulsar1:6650").option("admin.url", "http://pulsar1:8080").option("topic", "persistent://public/default/pi-sensors").load()

scala> dfPulsar.printSchema()
root
 |-- uuid: string (nullable = true)
 |-- ipaddress: string (nullable = true)
 |-- cputempf: integer (nullable = true)
 |-- runtime: integer (nullable = true)
 |-- host: string (nullable = true)
 |-- hostname: string (nullable = true)
 |-- macaddress: string (nullable = true)
 |-- endtime: string (nullable = true)
 |-- te: string (nullable = true)
 |-- cpu: float (nullable = true)
 |-- diskusage: string (nullable = true)
 |-- memory: float (nullable = true)
 |-- rowid: string (nullable = true)
 |-- systemtime: string (nullable = true)
 |-- ts: integer (nullable = true)
 |-- starttime: string (nullable = true)
 |-- BH1745_red: float (nullable = true)
 |-- BH1745_green: float (nullable = true)
 |-- BH1745_blue: float (nullable = true)
 |-- BH1745_clear: float (nullable = true)
 |-- VL53L1X_distance_in_mm: float (nullable = true)
 |-- ltr559_lux: float (nullable = true)
 |-- ltr559_prox: float (nullable = true)
 |-- bme680_tempc: float (nullable = true)
 |-- bme680_tempf: float (nullable = true)
 |-- bme680_pressure: float (nullable = true)
 |-- bme680_humidity: float (nullable = true)
 |-- lsm303d_accelerometer: string (nullable = true)
 |-- lsm303d_magnetometer: string (nullable = true)
 |-- __key: binary (nullable = true)
 |-- __topic: string (nullable = true)
 |-- __messageId: binary (nullable = true)
 |-- __publishTime: timestamp (nullable = true)
 |-- __eventTime: timestamp (nullable = true)
 |-- __messageProperties: map (nullable = true)
 |    |-- key: string
 |    |-- value: string (valueContainsNull = true)


## Example Queries

val pQuery = dfPulsar.selectExpr("*").writeStream.format("console").option("truncate", false).start()

val pQuery = dfPulsar.selectExpr("CAST(__key AS STRING)", 
                                 "CAST(uuid AS STRING)",
                                 "CAST(ipaddress AS STRING)",
                                 "CAST(cputempf AS STRING)",
                                 "CAST(host AS STRING)",
                                 "CAST(cpu AS STRING)",
                                 "CAST(diskusage AS STRING)",
                                 "CAST(memory AS STRING)",
                                 "CAST(systemtime AS STRING)",
                                 "CAST(BH1745_red AS STRING)",
                                 "CAST(BH1745_green AS STRING)",
                                 "CAST(BH1745_blue AS STRING)",
                                 "CAST(BH1745_clear AS STRING)",
                                 "CAST(VL53L1X_distance_in_mm AS STRING)",
                                 "CAST(ltr559_lux AS STRING)",                                 
                                 "CAST(bme680_tempf AS STRING)",
                                 "CAST(bme680_pressure AS STRING)",
                                 "CAST(bme680_humidity AS STRING)")
                                 .as[(String, String, String, String, String, String, String, String,
                                 String, String, String, String, String, String, String, String, String, String)]
            .writeStream.format("csv")
            .option("truncate", "false")
            .option("header", true)
            .option("path", "/opt/demo/pisensordata")
            .option("checkpointLocation", "/tmp/checkpoint")
            .start()

## You could do csv, parquet, json, orc

pQuery.explain()
pQuery.awaitTermination()
pQuery.stop()

// can be "orc", "json", "csv", etc.

SPARK SPARK SPARK SPARK SPARK SPARK

Example Spark ETL CSV Output

/opt/demo/pisensordata# cat part-00000-0425bfc8-5d25-4143-818c-bc7af5e1d82c-c000.csv
__key,uuid,ipaddress,cputempf,host,cpu,diskusage,memory,systemtime,BH1745_red,BH1745_green,BH1745_blue,BH1745_clear,VL53L1X_distance_in_mm,ltr559_lux,bme680_tempf,bme680_pressure,bme680_humidity
snr_20220324215723,snr_20220324215723,192.168.1.229,95,piups,0.0,3887.5 MB,20.6,03/24/2022 17:57:24,134.2,99.0,75.6,130.0,15.0,6.09,70.66,1006.11,44.737

CSV

Flink SQL

CREATE CATALOG pulsar WITH (
   'type' = 'pulsar',
   'service-url' = 'pulsar://pulsar1:6650',
   'admin-url' = 'http://pulsar1:8080',
   'format' = 'json'
);

USE CATALOG pulsar;

SHOW TABLES;


describe `pi-sensors`;
> 
+------------------------+--------+------+-----+--------+-----------+
|                   name |   type | null | key | extras | watermark |
+------------------------+--------+------+-----+--------+-----------+
|                   uuid | STRING | true |     |        |           |
|              ipaddress | STRING | true |     |        |           |
|               cputempf |    INT | true |     |        |           |
|                runtime |    INT | true |     |        |           |
|                   host | STRING | true |     |        |           |
|               hostname | STRING | true |     |        |           |
|             macaddress | STRING | true |     |        |           |
|                endtime | STRING | true |     |        |           |
|                     te | STRING | true |     |        |           |
|                    cpu |  FLOAT | true |     |        |           |
|              diskusage | STRING | true |     |        |           |
|                 memory |  FLOAT | true |     |        |           |
|                  rowid | STRING | true |     |        |           |
|             systemtime | STRING | true |     |        |           |
|                     ts |    INT | true |     |        |           |
|              starttime | STRING | true |     |        |           |
|             BH1745_red |  FLOAT | true |     |        |           |
|           BH1745_green |  FLOAT | true |     |        |           |
|            BH1745_blue |  FLOAT | true |     |        |           |
|           BH1745_clear |  FLOAT | true |     |        |           |
| VL53L1X_distance_in_mm |  FLOAT | true |     |        |           |
|             ltr559_lux |  FLOAT | true |     |        |           |
|            ltr559_prox |  FLOAT | true |     |        |           |
|           bme680_tempc |  FLOAT | true |     |        |           |
|           bme680_tempf |  FLOAT | true |     |        |           |
|        bme680_pressure |  FLOAT | true |     |        |           |
|        bme680_humidity |  FLOAT | true |     |        |           |
|  lsm303d_accelerometer | STRING | true |     |        |           |
|   lsm303d_magnetometer | STRING | true |     |        |           |
+------------------------+--------+------+-----+--------+-----------+

select max(bme680_pressure) as maxpressure, max(bme680_tempf) as maxtemp, max(ltr559_lux) as maxlux, avg(BH1745_red) as avgred,
       max(VL53L1X_distance_in_mm) as maxdistance
from `pi-sensors`

select * from `pi-sensors`;

FLINK FLINK FLINK FLINK

Apache NiFi - Pulsar Consumer. MongoDB Writer.

NIFI

NIFI

NIFI

NIFI

NIFI

NIFI

Data Store - MongoDB


mongo -u debezium -p dbz --authenticationDatabase admin pulsar1:27017/inventory

show databases

db.createCollection("pisensors")

show collections

db.pisensors.find().pretty()

db.pisensors.find().pretty()
{
        "_id" : ObjectId("623b812e5dae8913d42a93ee"),
        "uuid" : "snr_20220323194514",
        "ipaddress" : "192.168.1.229",
        "cputempf" : 100,
        "runtime" : 9,
        "host" : "piups",
        "hostname" : "piups",
        "macaddress" : "b8:27:eb:4a:4b:61",
        "endtime" : "1648064714.7820184",
        "te" : "9.371636629104614",
        "cpu" : 6.5,
        "diskusage" : "3895.4 MB",
        "memory" : 21.4,
        "rowid" : "20220323194514_c9ec900f-05c2-49c4-985f-ddd83e8b15c0",
        "systemtime" : "03/23/2022 15:45:15",
        "ts" : 1648064715,
        "starttime" : "03/23/2022 15:45:05",
        "BH1745_red" : 112.2,
        "BH1745_green" : 83,
        "BH1745_blue" : 64.8,
        "BH1745_clear" : 110,
        "VL53L1X_distance_in_mm" : 31,
        "ltr559_lux" : 6.65,
        "ltr559_prox" : 0,
        "bme680_tempc" : 23.47,
        "bme680_tempf" : 74.25,
        "bme680_pressure" : 1017.71,
        "bme680_humidity" : 34.432,
        "lsm303d_accelerometer" : "-00.08g : -01.01g : +00.01g",
        "lsm303d_magnetometer" : "+00.06 : +00.30 : +00.07"
}

MongoData

Monitor Everything! Let me see what's going on!?!??!

GRAFANA

GRAFANA

GRAFANA

PULSARMAN

References

March 7, 2022 - This Week in Streaming

 A lot going on this upcoming week including a cool meetup.

https://www.linkedin.com/pulse/march-7-2022-tim-spann/?trackingId=z6Gm4tXmQGCAiwKJuspXzw%3D%3D

No alt text provided for this image

Postponed due to war:

TRAINING

๐Ÿš€Last chance to start your #ApachePulsar Operations Training next week!

๐Ÿ—“️March 8-10 daily, tune your clusters with StreamNative experts. RSVP now 

EVENTS

Coming up next week, John and I have an interesting application reading NFTs and streaming them through Apache Pulsar to Apache NiFi to Apache Kudu.

No alt text provided for this image
No alt text provided for this image

ARTICLES


RECENT EVENTS

ElasticCC: Ingesting Data at Scale into Elasticsearch with Apache Pulsar


CODE

COOL PROJECTS

IDE For Pytorch!??! Thank you. I am looking at PyTorch + Pulsar Python Functions for coolness.

Project Updates

Producing and Consuming Pulsar messages with Apache NiFi

Producing and Consuming Pulsar messages with Apache NiFi


Thanks to Pulsar committer and Author, David Kjerrumgaard, we have a brand new advanced feature Apache NiFi 1.14/1.15 record processor for consuming and producing messages from StreamNative Cloud and any other Apache Pulsar cluster.   I recommend utilizing the latest Apache NiFi 1.15 with Apache Pulsar 2.8.1.





















Official First NAR Release


Connector
https://github.com/david-streamlio/pulsar-nifi-bundle






References

Pulsar Summit

 Pulsar Summit Europe 2021 is taking place virtually on October 6. Sessions include industry experts from Apache Pulsar PMC, CleverCloud, and Databricks. You’ll learn about the latest Pulsar project updates, technology. Register today and save your seat: 


Building Bad Titles For Talks

Building Bad Titles For Talks

gentitles.pt

from textgenrnn import textgenrnn

textgen = textgenrnn()

textgen.train_from_file('tim.txt', num_epochs=1)

textgen.generate()



 

Example Run


tspann@Timothys-MBP code % python3.7 gentitles.py

/Users/tspann/Library/Python/3.7/lib/python/site-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:375: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.

  "The `lr` argument is deprecated, use `learning_rate` instead.")

2021-08-02 10:40:28.146481: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

69 texts collected.

Training on 2,506 character sequences.

2021-08-02 10:40:28.710370: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)

19/19 [==============================] - 6s 143ms/step - loss: 1.8994

####################

Temperature: 0.2

####################

Apache Streaming Streaming Station Stack


First Anti-Tatto Stack (A File State Stack Pack And Pussions


A Stack of Apache Stack


####################

Temperature: 0.5

####################

Cloud Dead Folk Streaming And Analance Art Past Flink


Into Apache Space Trades Channel Stack


Push Lake Station


####################

Temperature: 1.0

####################

Batt-Indunes Means Stgut


Sometimes time page


I real-posts, UIP Puming this reaction


Real-Timobitman with Apache and Flire

Note installing on Mac:


pip3 install git+git://github.com/minimaxir/textgenrnn.git


tim.txt

Apache NiFi 101:   Introduction and Best Practices

Cracking the Nut, Solving Edge AI with Apache Tools and Frameworks

FLANK Stack for Cloud Data Lakes

FLIP Stack for Cloud Data Lakes

Lightning Introduction to FLaNK

Pack Your Bags, We’re Going on a Data Journey!

Real-Time Streaming in Azure

Using Apache NiFi with Apache Pulsar for Fast Data On-Ramp

Using the Mm FLaNK Stack for Edge AI (Flink, NiFi, Kafka, Kudu)

Utilizing Apache Kafka, Apache NiFi and MiNiFi for EdgeAI IoT at Scale

Real-Time Streaming in Any and All Clouds, Hybrid and Beyond

Using the FLiPN Stack for Edge AI (Flink, NiFi, Pulsar)

Using Apache NiFi with Apache Pulsar for Fast Data On-Ramp

Hail Hydrate! From Stream to Lake with Pulsar and Friends

Continuous SQL with Kafka and Flink

FLiP Stack for Cloud Data Lakes

BUILDING EVENT STREAMING MICROSERVICES WITH NiFI Stateless AND APACHE PULSAR

CLOUD NATIVE STREAMING

USING REAL_TIME DATA FEEDS

IOT STREAMING WITH MQTT, MINIFI AND PULSAR

BUILDING REAL_TIME WEB APPLICATIONS WITH WEBSOCKETS AND PULSAR

KAFKA STREAM PROCESSING WITH SQL

CODELESS PIPELINES WITH KAFKA AND PULSAR

BUILD A REAL_TIME PIPELINE NOW WITH PULSAR FUNCTIONS

Cloud Enterprise Data Platforms

Hybrid Cloud

Streaming with Flink, Kafka, NiFi

AI at the Edge with Microcontrollers and Small Devices

Voice Data In Queries

Event Handler as a Service (Automatic Kafka Message Reading)

More Powerful Parameter Based Modular Streaming

Cloud First For Big Data

Log Handling Moves to MiNiFi

Full AI At The Edge with Deployable Models

More Powerful Edge TPU/GPU/VPU

Kafka is everywhere

Open Source UI Driven Event Engines

FLaNK Stack gains popularity

FLINK Everywhere

Real-Time Stock Processing

Edge to AI:  Analytics from the Edge

Utilizing Apache NiFi for IoT

Let's Build A Simple Ingest To Cloud Datawarehouse with Low Code

Learning the Basics of Apache NiFi for IoT

Introduction to Flank Stack

Introduction to Flip Stack

Introduction to Pulsar

Apache Deep Learning 101

Big Data DevOps

Automating Social Media

Accessing Feeds from Etherdelta on Trades

Vision Thing

Deep Dive into Apache NiFi

Apache NiFi : Ingesting Enterprise Data at Scale

Continous SQL with Pulsar and Flink

Apache NiFi Deep Dive 300

Smart Transit:  Real-time Transit Information with FliP

Build in the Cloud

Streaming SQL and Data Flow

Real-Time Streaming Pipelines with FLaNK

Real-Time Streaming Pipelines with FLiP

Apache NiFi DevOps

Flink SQL for Continuous SQL & ETL

Next-Gen Apache NiFi

Ask the Experts

Hello, NiFi

Using Apache MXNet in Production Deep Learning Streaming Pipelines

From Stream to Lake