Showing posts with label milvus. Show all posts
Showing posts with label milvus. Show all posts

AIM Weekly for 10 June 2024

 

10-June-2024

Tim Spann @PaaSDev

Milvus - Towhee - Attu - Feder - GPTCache - VectorDB Bench

Important Poll:

https://www.linkedin.com/posts/timothyspann_now-that-i-am-doing-a-lot-of-cool-ai-and-activity-7201995051491635200-olsD?utm_source=share&utm_medium=member_desktop

AIM Weekly

Towhee - Attu - Milvus (Tim-Tam)

FLaNK - FLiPN

https://github.com/milvus-io/milvus

https://pebble.is/PaaSDev

https://vimeo.com/flankstack

https://www.youtube.com/@FLaNK-Stack

https://www.threads.net/@tspannhw

https://medium.com/@tspann/subscribe

https://ossinsight.io/analyze/tspannhw

CODE + COMMUNITY

Please join my meetup group NJ/NYC/Philly/Virtual.

https://www.meetup.com/unstructured-data-meetup-new-york/

This is Issue #141

New Releases

Milvus Lite 2.4.3 - Local Python

Upcoming

There's time to join today's meetup in San Francisco June 10 https://lu.ma/0yw4coyr

These last couple were amazing.

YouTube videos of all 3 most recent events. June 3rd hosted by Chris https://www.youtube.com/watch?v=UobR3czXqSo&list=PLPg7_faNDlT7SC3HxWShxKT-t-u7uKr--

May 22nd hosted by Chris https://www.youtube.com/watch?v=6pjObdJdyFs&list=PLPg7_faNDlT7SC3HxWShxKT-t-u7uKr--&index=2

May 21st hosted by Christy https://www.youtube.com/watch?v=VEK3_e-DbWI&list=PLPg7_faNDlT7SC3HxWShxKT-t-u7uKr--&index=3

Summary of the Last Awesome Meetup https://www.linkedin.com/feed/update/urn:li:activity:7202803256891248640/

Articles

There's a lot of cool stuff with Milvus and new models, techniques, libraries and use cases.

https://medium.com/@tspann/unstructured-street-data-in-new-york-8d3cde0a1e5b

https://medium.com/@tspann/tech-week-soft-meetup-debut-june-2024-fc4cdf79342d

https://medium.com/@tspann/shining-some-light-on-the-new-milvus-lite-5a0565eb5dd9

https://zilliz.com/blog/why-i-joined-zilliz-tim-spann

https://www.tiktok.com/@tim_the_nifi_guy/video/7374753137074212142

https://milvus.io/docs/multi_tenancy.md#Partition-oriented-multi-tenancy

https://zilliz.com/blog/improve-behavior-science-experiments-with-llm-and-milvus

https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

https://llava-vl.github.io/

https://huggingface.co/google/efficientnet-b4

https://towardsdatascience.com/understanding-masked-language-models-mlm-and-causal-language-models-clm-in-nlp-194c15f56a5

https://jina.ai/news/implementing-a-chat-history-rag-with-jina-ai-and-milvus-lite/

https://zilliz.com/blog/elevating-user-experience-with-image-based-fashion-recommendations

https://medium.com/aiguys/yolov10-object-detection-king-is-back-739eaaab134d

https://medium.com/follower-booster-hub/sqlcoder-70b-becomes-the-leading-ai-sql-model-b2911920f594

https://medium.com/@learn-simplified/why-entire-ai-field-is-headed-towards-ai-agents-a268ac9661ed

https://medium.com/@zilliz_learn/advanced-retrieval-augmented-generation-rag-apps-with-llamaindex-ffc966390332

https://pub.towardsai.net/llama-3-llama-cpp-is-the-local-ai-heaven-4f8fe7f119be

https://medium.com/@basics.machinelearning/discover-docllm-the-new-llm-from-jpmorgan-for-working-with-complex-documents-5f54ea287d52

https://medium.com/@igorvgorbenko/harmony-in-data-the-music-recommendation-system-with-milvus-c9711609ed36

https://www.pythonmorsels.com/cli-tools/

https://medium.com/vector-database/introducing-pymilvus-integration-with-embedding-models-a82f10d516ea

https://zilliz.com/blog/praticial-tips-and-tricks-for-developers-building-rag-applications

https://genai-handbook.github.io/?utm_source=substack&utm_medium=email

https://zilliz.com/learn/everything-you-should-know-about-vector-embeddings

https://medium.com/@zilliz_learn/milvus-reference-architectures-e30a27c9f3c2

https://medium.com/@batuhansenerr/yolov10-custom-object-detection-bd7298ddbfd3

https://medium.com/enterprise-rag/kickstart-your-genai-applications-with-milvus-lite-and-whyhow-ais-open-source-rule-based-retrieval-70873c7576f1

https://www.phoronix.com/news/AMD-Peano-LLVM-Ryzen-AI

https://stackoverflow.blog/2024/06/06/breaking-up-is-hard-to-do-chunking-in-rag-applications/

https://zilliz.com/event/knowledge-graphs-in-rag-with-whyhow-ai/success?utm_campaign=2024-06-06_webinar_whyhow-ai_zilliz&utm_medium=email&_hsenc=p2ANqtz-96dlzr_6fS86ImdAwqhcJ2xxKs_qMoRGbBajbhRxZImTPovcR_9BulWcj7EJ-sJMGJ68UUkR9Sbe1VZs8TZ7z5u-hbuQ&_hsmi=310626886&utm_source=singleoffer

https://medium.com/aiguys/prompt-engineering-is-dead-dspy-is-new-paradigm-for-prompting-c80ba3fc4896

https://medium.com/sourcescribes/trending-open-source-ai-research-projects-171fef330219

https://medium.com/@zilliz_learn/are-cpus-enough-a-review-of-vector-search-running-on-novel-hardware-2c5eb16d25dd

Videos

Street Cams + Milvus https://medium.com/@tspann/unstructured-street-data-in-new-york-8d3cde0a1e5b

Conf42: ML: Emerging GenAI https://youtu.be/ktVVdJB306U?feature=shared

Generative AI with Milvus https://www.youtube.com/watch?v=IfWIzKsoHnA

SF Unstructured Meetup - 03 June 2024 https://www.youtube.com/watch?v=UobR3czXqSo&ab_channel=Zilliz

Slides

https://www.slideshare.net/slideshow/generative-ai-on-enterprise-cloud-with-nifi-and-milvus/267678399

https://www.slideshare.net/slideshow/06-04-2024-nyc-tech-week-discussion-on-vector-databases-unstructured-data-and-ai/269523214

Events

June 12, 2024: Budapest Data + ML Forum. Virtual. image https://budapestml.hu/2024/en/speakers/

June 13-14, 2024: Data Science Summit ML Edition 2024 | 13.06.2024 - 14.06.2024 https://ml.dssconf.pl/#agenda

June 18, 2024: Princeton Meetup https://www.meetup.com/applied-generative-artificial-intelligence-applications/events/301336510/ https://www.startupgrind.com/events/details/startup-grind-princeton-presents-genai-gathering/

June 20, 2024: AI Camp Meetup. NYC. https://www.meetup.com/unstructured-data-meetup-new-york/events/301383476/

Sept 24, 2024: JConf.Dev. Dallas. https://2024.jconf.dev/session/598816

Nov 5-7, 10-12, 2024: CloudX. Online/Santa Clara. https://www.developerweek.com/cloudx/

Nov 19, 2024: XtremePython. Online. https://xtremepython.dev/2024/

Code

Models

Tools

Cool

This is a cool Raspberry Pi Pico + ESP copter https://www.kickstarter.com/projects/sb-gajendra/piwings-soar-into-stem-with-the-ultimate-pi-powered-drone?ref=checkout_rewards_page

ASCII Movies https://ascii.theater/

More ASCII Fun https://meatfighter.com/ascii-silhouettify/

© 2020-2024 Tim Spann https://www.youtube.com/@FLaNK-Stack FLaNK-AIM with LLAMA 3


🎥 Playlist:  Unstructured Data Meetup  [https://www.meetup.com/unstructured-data-bay-area/events/](https://www.meetup.com/unstructured-data-bay-area/events/)
🖥️ Website:  [https://www.youtube.com/@MilvusVectorDatabase/videos](https://www.youtube.com/@MilvusVectorDatabase/videos)
X Twitter -   / milvusio  [https://x.com/milvusio](https://x.com/milvusio)
🔗 Linkedin:  / zilliz  [https://www.linkedin.com/company/zilliz/](https://www.linkedin.com/company/zilliz/)
😺 GitHub: [https://github.com/milvus-io/milvus](https://github.com/milvus-io/milvus)
🦾 Invitation to join discord:   / discord  [https://discord.com/invite/FjCMmaJng6](https://discord.com/invite/FjCMmaJng6)

Using Milvus-Lite Now

 The easy way to complete Gen AI solutions anywhere

A revolutionary new release is now out that brings your AI databases anywhere and adds easy to developing enterprise Gen AI applications.

It is easy to get started.

pip3 install -U pymilvus

You need 2.4.3 where milvus-lite is embedded in the Python client for Milvus.

I installed this on my Mac M1 in seconds. Let’s rock.

I am going to install on some edge devices as well and follow that up with some cool examples in the coming weeks.

There are a lot of different types of Python environments, installing this in a Dockerized environment, Jupyter notebook or virtual Python environment is probably wise as there are some many libraries needed in most AI applications.

If you are okay with it, for Python 3.11, you can always do this:

pip3 install -U "pymilvus[2.4.3]" --break-system-packages

That is a last resort, I recommend going another way. Once installed you can quickly get started. You know it’s the least recommended way when they give you three pages of warnings then drop that extra tag at the bottom. So go with a virtual environment, please.

A better way is with a Python 3 Virtual Environment.

timothyspann@MacBook-Pro code % python3 -m venv milvusvenv
timothyspann@MacBook-Pro code % source milvusvenv/bin/activate
(milvusvenv) timothyspann@MacBook-Pro code % python3 -m pip install pymilvus -U
Collecting pymilvus
Using cached pymilvus-2.4.3-py3-none-any.whl.metadata (5.3 kB)
Collecting setuptools>=67 (from pymilvus)
Using cached setuptools-70.0.0-py3-none-any.whl.metadata (5.9 kB)
Collecting grpcio<=1.63.0,>=1.49.1 (from pymilvus)
Using cached grpcio-1.63.0-cp312-cp312-macosx_10_9_universal2.whl.metadata (3.2 kB)
Collecting protobuf>=3.20.0 (from pymilvus)
Using cached protobuf-5.27.0-cp38-abi3-macosx_10_9_universal2.whl.metadata (592 bytes)
Collecting environs<=9.5.0 (from pymilvus)
Using cached environs-9.5.0-py2.py3-none-any.whl.metadata (14 kB)
Collecting ujson>=2.0.0 (from pymilvus)
Using cached ujson-5.10.0-cp312-cp312-macosx_11_0_arm64.whl.metadata (9.3 kB)
Collecting pandas>=1.2.4 (from pymilvus)
Using cached pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl.metadata (19 kB)
Collecting milvus-lite<2.5.0,>=2.4.0 (from pymilvus)
Downloading milvus_lite-2.4.6-py3-none-macosx_11_0_arm64.whl.metadata (5.6 kB)
Collecting marshmallow>=3.0.0 (from environs<=9.5.0->pymilvus)
Using cached marshmallow-3.21.2-py3-none-any.whl.metadata (7.1 kB)
Collecting python-dotenv (from environs<=9.5.0->pymilvus)
Using cached python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)
Collecting numpy>=1.26.0 (from pandas>=1.2.4->pymilvus)
Using cached numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl.metadata (61 kB)
Collecting python-dateutil>=2.8.2 (from pandas>=1.2.4->pymilvus)
Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Collecting pytz>=2020.1 (from pandas>=1.2.4->pymilvus)
Using cached pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)
Collecting tzdata>=2022.7 (from pandas>=1.2.4->pymilvus)
Using cached tzdata-2024.1-py2.py3-none-any.whl.metadata (1.4 kB)
Collecting packaging>=17.0 (from marshmallow>=3.0.0->environs<=9.5.0->pymilvus)
Using cached packaging-24.0-py3-none-any.whl.metadata (3.2 kB)
Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas>=1.2.4->pymilvus)
Using cached six-1.16.0-py2.py3-none-any.whl.metadata (1.8 kB)
Using cached pymilvus-2.4.3-py3-none-any.whl (194 kB)
Using cached environs-9.5.0-py2.py3-none-any.whl (12 kB)
Using cached grpcio-1.63.0-cp312-cp312-macosx_10_9_universal2.whl (10.1 MB)
Downloading milvus_lite-2.4.6-py3-none-macosx_11_0_arm64.whl (19.8 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.8/19.8 MB 39.2 MB/s eta 0:00:00
Using cached pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl (11.3 MB)
Using cached protobuf-5.27.0-cp38-abi3-macosx_10_9_universal2.whl (412 kB)
Using cached setuptools-70.0.0-py3-none-any.whl (863 kB)
Using cached ujson-5.10.0-cp312-cp312-macosx_11_0_arm64.whl (51 kB)
Using cached marshmallow-3.21.2-py3-none-any.whl (49 kB)
Using cached numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl (13.7 MB)
Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)
Using cached pytz-2024.1-py2.py3-none-any.whl (505 kB)
Using cached tzdata-2024.1-py2.py3-none-any.whl (345 kB)
Using cached python_dotenv-1.0.1-py3-none-any.whl (19 kB)
Using cached packaging-24.0-py3-none-any.whl (53 kB)
Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
Installing collected packages: pytz, ujson, tzdata, six, setuptools, python-dotenv, protobuf, packaging, numpy, milvus-lite, grpcio, python-dateutil, marshmallow, pandas, environs, pymilvus
Successfully installed environs-9.5.0 grpcio-1.63.0 marshmallow-3.21.2 milvus-lite-2.4.6 numpy-1.26.4 packaging-24.0 pandas-2.2.2 protobuf-5.27.0 pymilvus-2.4.3 python-dateutil-2.9.0.post0 python-dotenv-1.0.1 pytz-2024.1 setuptools-70.0.0 six-1.16.0 tzdata-2024.1 ujson-5.10.0
(milvusvenv) timothyspann@MacBook-Pro code % python3 testlite.py
data: ["[{'id': 0, 'distance': 0.9999999403953552, 'entity': {'text': 'Artificial intelligence was founded as an academic discipline in 1956.', 'subject': 'history'}}, {'id': 2, 'distance': -0.046234432607889175, 'entity': {'text': 'Born in Maida Vale, London, Turing was raised in southern England.', 'subject': 'history'}}]"] , extra_info: {'cost': 0}
data: ["{'id': 0, 'text': 'Artificial intelligence was founded as an academic discipline in 1956.', 'subject': 'history'}", "{'id': 1, 'text': 'Alan Turing was the first person to conduct substantial research in AI.', 'subject': 'history'}", "{'id': 2, 'text': 'Born in Maida Vale, London, Turing was raised in southern England.', 'subject': 'history'}"] , extra_info: {'cost': 0}
[0, 1, 2]
(milvusvenv) timothyspann@MacBook-Pro code %

What is pretty awesome is that Milvus Lite, think lean and clean like MiNiFi, not Lite as in weak beer, is a lightweight vector database that runs within your Python application. So you just need to install the Python SDK for Milvus and you get the local vector database included. You can now run on the edge or develop applications with the same API as enterprise Milvus deployments in clusters that scale to billions of vectors. You just need to change where you point your Milvus connection.

From:

client = MilvusClient(“db/milvus_demo.db”)

To:

client = MilvusClient( uri=”http://server:19530" )

Or:

client = MilvusClient( uri=”https://server12345.serverless.gcp-us-west1.cloud.zilliz.com", token=”tokenX”)

What’s cool is nothing else changes and you can access and use all the core components for vector index and query parsing. It runs fast as a Python process. This library has already been integrated with the world’s leading AI dev stacks LlamaIndex and LangChain. There is also integration with Haystack AI and HuggingFace along with many others.

You can now setup a Retrieval-Augmented Generation (RAG) pipeline without having to setup a server or sign up for a cloud cluster before you start. When it’s time to go to production you can deploy to a cluster or Zilliz Cloud. Easy, peasy, cluster squeezy…

There’s a cool notebook you can try right now:

If you don’t have Jupyter installed yet (do that in that virtual environment).

I will be going through a number of cool examples and providing guidance at my upcoming meetups in Princeton and New York City.

If you are not in New York or Princeton area, have no worries we will stream and record to Youtube. There are also other meetups around the world including San Francisco, South Bay, Berlin and Seattle.

If you saw my recent newsletter you can see I joined Zilliz to work on the Open Source AI Database, Milvus.

I am working on a name for my new pattern of applications. It could be FLaNK-AIM or AIM (AI + Milvus) or Tim-Tam (Tim’s Towhee AI/Attu Milvus). Tim can also stand for TIMM (Pytorch Image Models).

I added a survey if you want to help, thanks! I appreciate it. You could also leave a comment if you like.

RESOURCES

I will be adding all of my favorite vector database, AI Database, LLM, Generative AI, Milvus and related items to my new website: