Skip to main content

Exporting and Importing Data from MongoDB in the Cloud with Apache NiFi

We have data stored in a MongoDB from a third party application in Amazon.
Export from MongoDB to Parquet.
Moving data from a single purpose data silo to your Enterprise Data Lake is a common use case. Using Apache NiFi we can easily save your data from this remote silo and bring it streaming into your analytics store for machine learning and deep analytics with Impala, Hive and Spark. It doesn't matter which cloud which are coming from or going to or from cloud to on-premise or various Hybrid situations. Apache NiFi will work in all of these situations which full data lineage and provenance on what it did when.
I have created a mock dataset with Mockaroo. It's all about yummy South Jersey sandwiches.
Our Easy MongoDB Flows to Ingest Mongo data to our Date Lake and another flow to load MongoDB.
In our test, we loaded all the data from our Mock REST API into a MongoDB in the cloud. In the real world an application populated that dataset and now we need to bring it into our central data lake for analytics.
We use Jolt to replace the non-Hadoop friendly built-in MongoDB _id with a friendly name mongo_id.
Storing to Parquet on HDFS is Easy (Let's compress with Snappy)
Connecting to MongoDB is easy, setup a controller and specify the database and collection.
Our MongoDB Connection Service, just enter your URI with username/password@server.
GetHTTP URL
https://my.api.mockaroo.com/hoagie.json

GetHTTP Filename
${filename:append('hoagie.'):append(${now():format('yyyyMMddHHmmSS'):append(${md5}):append('.json')})}

JSON Path Expression
$.*

JOLT Chain
[{
"operation": "shift",
"spec": {
"_id": "mongo_id",
"*": "&"
}
}]

Mongo URI
mongodb://user:userpassword@server.cloud.com:13916/nifi
Many files stored in HDFS as Parquet

Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

NiFi on Cloudera Data Platform Upgrade - April 2021

CFM 2.1.1 on CDP 7.1.6 There is a new Cloudera release of Apache NiFi now with SAML support. Apache NiFi 1.13.2.2.1.1.0 Apache NiFi Registry 0.8.0.2.1.1.0 See:    https://blog.cloudera.com/the-new-releases-of-apache-nifi-in-public-cloud-and-private-cloud/ https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-component-support.html https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-whats-new.html https://docs.cloudera.com/cfm/2.1.1/upgrade-paths/topics/cfm-upgrade-paths.html   For changes:    https://www.datainmotion.dev/2021/02/new-features-of-apache-nifi-1130.html Get your download on:  https://docs.cloudera.com/cfm/2.1.1/download/topics/cfm-download-locations.html To start researching for the future, take a look at some of the technical preview features around Easy Rules engine and handlers. https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-technical-preview.html Make sure you use the latest possible JDK 8 as there are some bugs out there.   Use a recent v

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway What does it look like? Where Can I Run This Magic Engine: Private Cloud, Public Cloud, Hybrid Cloud, VM, Bare Metal, Single Node, Laptop, Raspberry Pi or anywhere you have a 1GB of RAM and some CPU is a good place to run a powerful graphical integration and dataflow engine.   You can also run MiNiFi C++ or Java agents if you want it even smaller. Sounds Too Powerful and Expensive: Apache NiFi is Open Source and can be run freely anywhere. For What Use Cases: Microservices, Images, Deep Learning and Machine Learning Models, Structured Data, Unstructured Data, NLP, Sentiment Analysis, Semistructured Data, Hive, Hadoop, MongoDB, ElasticSearch, SOLR, ETL/ELT, MySQL CDC, MySQL Insert/Update/Delete/Query, Hosting Unlimited REST Services, Interactive with Websockets, Ingesting Any REST API, Natively Converting JSON/XML/CSV/TSV/Logs/Avro/Parquet, Excel, PDF, Word Documents, Syslog, Kafka, JMS, MQTT, TCP