Skip to main content

IoT Series: Sensors: Utilizing Breakout Garden Hat: Part 1 - Introduction

IoT Series: Sensors: Utilizing Breakout Garden Hat: Part 1 - Introduction
An easy option for adding, removing and prototype sensor reads from a standard Raspberry Pi with no special wiring.
Hardware Component List:
  • Raspberry Pi
  • USB Power Cable
  • Pimoroni Breakout Garden Hat
  • 1.12" Mono OLED Breakout 128x128 White/Black Screen
  • BME680 Air Quality, Temperature, Pressure, Humidity Sensor
  • LWM303D 6D0F Motion Sensor (X, Y, Z Axes)
  • BH1745 Luminance and Color Sensor
  • LTR-559 Light and Proximity Sensor 0.01 lux to 64,000 lux
  • VL53L1X Time of Flight (TOF) Sensor Pew Pew Lasers!
Software Component List:
  • Raspian
  • Python 2.7
  • JDK 8 Java
  • Apache NiFi
  • MiniFi
Source Code:
Our Raspberry Pi has a Breakout Garden Hat with 5 sensors and one small display. The display is showing the last reading and is constantly updating. For debugging purposes, it shows the IP Address so I can connect as needed.
We currently run via nohup, but when we go into constant use I will switch to a Linux Service to run on startup.
The Python script initializes the connections to all of the sensors and then goes into an infinite loop of reading those values and building a JSON packet that we send via TCP/IP over port 5005 to a listener. MiniFi 0.5.0 Java Agent is using ListenTCP on that port to capture these messages and filter them based on alarm values. If outside of the checked parameters we send them via S2S/HTTP(s) to an Apache NiFi server.
We also have a USB WebCam (Sony Playstation 3 EYE) that is capturing images and we read those with MiniFi and send them to NiFi as well.
The first thing we need to do is pretty easy. We need to plug in our Pimoroni Breakout Garden Hat and our 6 plugs.
You have to do the standard installation of Python, Java 8, MiniFi and I recommend OpenCV. Make sure you have everything plugged in securely and the correct direction before you power on the Raspberry Pi.
Install Python PIP curl -o
cd breakout-garden-master
sudo ./
Running In NiFi

First we build our MiniFi Flow:
We have two objectives: listen for TCP/IP JSON messages from our running Python sensor collector and gather images captured by the PS3 Eye USB Webcam.
We then add content type and schema information to the attributes. We also extract a few values from the JSON stream to use for alerting.
We extract: $.cputemp, $.VL53L1X_distance_in_mm, $.bme680_humidity, $.bme680_tempf
These attributes are now attached to our flowfile which is unchanged. We can now Route on them.
So we route on a few alarm conditions:
We can easily add more conditions or different set values. We can also populate these set values from an HTTP / file lookup.
If these values are met we send to our local Apache NiFi router. This can then do further analysis with the fuller NiFi processor set including TensorFlow, MXNet, Record processing and lookups.
Local NiFi Routing
For now we are just splitting up the images and JSON and sending to two different remote ports on our cloud NiFi cluster.
These then arrive in the cloud.
As you can see a list of the flow files waiting to be processed (I haven't written that part yet). As you can see we are getting a few a second, we could get 100,000 a second if we needed. Just add nodes. Instant scaling. Cloudbreak can do that for you.
In part 2, we will start processing these data streams and images. We will also add Apache MXNet and TensorFlow at various points on the edge, router and cloud using Python and built-in Deep Learning NiFi processors I have authored. We will also break apart these records and send each sensor to it's own Kafka topic to be processed with Kafka Streams, Druid, Hive and HBase.
As part of our loop we write to our little screen current values:

Example Record
  1. {
  2. "systemtime" : "12/19/2018 22:15:56",
  3. "BH1745_green" : "4.0",
  4. "ltr559_prox" : "0000",
  5. "end" : "1545275756.7",
  6. "uuid" : "20181220031556_e54721d6-6110-40a6-aa5c-72dbd8a8dcb2",
  7. "lsm303d_accelerometer" : "+00.06g : -01.01g : +00.04g",
  8. "imgnamep" : "images/bog_image_p_20181220031556_e54721d6-6110-40a6-aa5c-72dbd8a8dcb2.jpg",
  9. "cputemp" : 51.0,
  10. "BH1745_blue" : "9.0",
  11. "te" : "47.3427119255",
  12. "bme680_tempc" : "28.19",
  13. "imgname" : "images/bog_image_20181220031556_e54721d6-6110-40a6-aa5c-72dbd8a8dcb2.jpg",
  14. "bme680_tempf" : "82.74",
  15. "ltr559_lux" : "006.87",
  16. "memory" : 34.9,
  17. "VL53L1X_distance_in_mm" : 134,
  18. "bme680_humidity" : "23.938",
  19. "host" : "vid5",
  20. "diskusage" : "8732.7",
  21. "ipaddress" : "",
  22. "bme680_pressure" : "1017.31",
  23. "BH1745_clear" : "10.0",
  24. "BH1745_red" : "0.0",
  25. "lsm303d_magnetometer" : "+00.04 : +00.34 : -00.10",
  26. "starttime" : "12/19/2018 22:15:09"
  27. }
NiFi Templates
Let's Build Those Topics Now
  1. /usr/hdp/current/kafka-broker/bin/ --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic bme680
  2. /usr/hdp/current/kafka-broker/bin/ --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic bh17455
  3. /usr/hdp/current/kafka-broker/bin/ --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic lsm303d
  4. /usr/hdp/current/kafka-broker/bin/ --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic vl53l1x
  5. /usr/hdp/current/kafka-broker/bin/ --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic ltr559

Hopefully in your environment, you will be able to have 3, 5 or 7 replication factor and many partitions. I have one Kafka Broker so this is what we are starting with.


Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

NiFi on Cloudera Data Platform Upgrade - April 2021

CFM 2.1.1 on CDP 7.1.6 There is a new Cloudera release of Apache NiFi now with SAML support. Apache NiFi Apache NiFi Registry See:   For changes: Get your download on: To start researching for the future, take a look at some of the technical preview features around Easy Rules engine and handlers. Make sure you use the latest possible JDK 8 as there are some bugs out there.   Use a recent v

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway What does it look like? Where Can I Run This Magic Engine: Private Cloud, Public Cloud, Hybrid Cloud, VM, Bare Metal, Single Node, Laptop, Raspberry Pi or anywhere you have a 1GB of RAM and some CPU is a good place to run a powerful graphical integration and dataflow engine.   You can also run MiNiFi C++ or Java agents if you want it even smaller. Sounds Too Powerful and Expensive: Apache NiFi is Open Source and can be run freely anywhere. For What Use Cases: Microservices, Images, Deep Learning and Machine Learning Models, Structured Data, Unstructured Data, NLP, Sentiment Analysis, Semistructured Data, Hive, Hadoop, MongoDB, ElasticSearch, SOLR, ETL/ELT, MySQL CDC, MySQL Insert/Update/Delete/Query, Hosting Unlimited REST Services, Interactive with Websockets, Ingesting Any REST API, Natively Converting JSON/XML/CSV/TSV/Logs/Avro/Parquet, Excel, PDF, Word Documents, Syslog, Kafka, JMS, MQTT, TCP