Skip to main content

Resizing AWS ESB


   11  lsblk
   12  df -H
   13  lsblk
   14  sudo growpart /dev/xvda 0
   15  sudo resize2fs /dev/xvda1
   16  lsblk
   17   sudo growpart /dev/xvda 2
   18  lsblk
   19  df -H
   24  lsblk
   25  xfs_growfs /dev/xvda2 


https://hackernoon.com/tutorial-how-to-extend-aws-ebs-volumes-with-no-downtime-ec7d9e82426e

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html


growpart /dev/xvda 2
CHANGED: partition=2 start=4096 old: size=20967391 end=20971487 new: size=2097147870 end=2097151966

lsblk
NAME    MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
xvda    202:0    0 1000G  0 disk 
├─xvda1 202:1    0    1M  0 part 
└─xvda2 202:2    0 1000G  0 part /

df -H
Filesystem      Size  Used Avail Use% Mounted on
devtmpfs         34G     0   34G   0% /dev
tmpfs            34G     0   34G   0% /dev/shm
tmpfs            34G   27M   34G   1% /run
tmpfs            34G     0   34G   0% /sys/fs/cgroup
/dev/xvda2       11G  2.3G  8.5G  22% /
tmpfs           6.8G     0  6.8G   0% /run/user/1000
tmpfs           6.8G     0  6.8G   0% /run/user/0

xfs_growfs /dev/xvda2 
meta-data=/dev/xvda2             isize=512    agcount=7, agsize=393216 blks
         =                       sectsz=512   attr=2, projid32bit=1
         =                       crc=1        finobt=0 spinodes=0
data     =                       bsize=4096   blocks=2620923, imaxpct=25
         =                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0 ftype=1
log      =internal               bsize=4096   blocks=2560, version=2
         =                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0
data blocks changed from 2620923 to 262143483
[root@ip-10-0-1-136 scripts]# lsblk
NAME    MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
xvda    202:0    0 1000G  0 disk 
├─xvda1 202:1    0    1M  0 part 
└─xvda2 202:2    0 1000G  0 part /

df -H
Filesystem      Size  Used Avail Use% Mounted on
devtmpfs         34G     0   34G   0% /dev
tmpfs            34G     0   34G   0% /dev/shm
tmpfs            34G   27M   34G   1% /run
tmpfs            34G     0   34G   0% /sys/fs/cgroup
/dev/xvda2      1.1T  2.4G  1.1T   1% /
tmpfs           6.8G     0  6.8G   0% /run/user/1000
tmpfs           6.8G     0  6.8G   0% /run/user/0

Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

Migrating Apache Flume Flows to Apache NiFi: Kafka Source to HDFS / Kudu / File / Hive

Migrating Apache Flume Flows to Apache NiFi: Kafka Source to HDFS / Kudu / File / Hive Article 7 -  https://www.datainmotion.dev/2019/10/migrating-apache-flume-flows-to-apache_9.html Article 6 -  https://www.datainmotion.dev/2019/10/migrating-apache-flume-flows-to-apache_35.html Article 5 -  Article 4 -  https://www.datainmotion.dev/2019/10/migrating-apache-flume-flows-to-apache_8.html Article 3 -  https://www.datainmotion.dev/2019/10/migrating-apache-flume-flows-to-apache_7.html Article 2 -  https://www.datainmotion.dev/2019/10/migrating-apache-flume-flows-to-apache.html Article 1 -  https://www.datainmotion.dev/2019/08/migrating-apache-flume-flows-to-apache.html Source Code:   https://github.com/tspannhw/flume-to-nifi This is one possible simple, fast replacement for " Flafka ". Consume / Publish Kafka And Store to Files, HDFS, Hive 3.1, Kudu Consume Kafka Flow   Merge Records And Store As AVRO or ORC Consume Kafka, Upda

Advanced XML Processing with Apache NiFi 1.9.1

Advanced XML Processing with Apache NiFi 1.9.1 With the latest version of Apache NiFi, you can now directly convert XML to JSON or Apache AVRO, CSV or any other format supported by RecordWriters.   This is a great advancement.  To make it even easier, you don't even need to know the schema before hand.   There is a built-in option to Infer Schema. The results of an RSS (XML) feed converted to JSON and displayed in a slack channel. Besides just RSS feeds, we can grab regular XML data including XML data that is wrapped in a Zip file (or even in a Zipfile in an email, SFTP server or Google Docs). Get the Hourly Weather Observation for the United States Decompress That Zip  Unpack That Zip into Files One ZIP becomes many XML files of data. An example XML record from a NOAA weather station. Converted to JSON Automagically Let's Read Those Records With A Query and Convert the results to JSON Records