Skip to main content

Migrating Apache Flume Flows to Apache NiFi: Kafka Source to Apache Parquet on HDFS

Migrating Apache Flume Flows to Apache NiFi: Kafka Source to Apache Parquet on HDFS


Article 3 - This

This is one possible simple, fast replacement for "Flafka".   I can read any/all Kafka topics, route and transform them with SQL and store them in Apache ORC, Apache Avro, Apache Parquet, Apache Kudu, Apache HBase, JSON, CSV, XML or compressed files of many types in S3, Apache HDFS, File Systems or anywhere you want to stream this data in Real-time.   Also with a fast easy to use Web UI.   Everything you liked doing in Flume but now easier and with more Source and Sink options.







Consume Kafka And Store to Apache Parquet


Kafka to Kudu, ORC, AVRO and Parquet 


With Apache 1.10 I can send those Parquet files anywhere not only HDFS.


JSON (or CSV or AVRO or ...) and Parquet Out

In Apache 1.10, Parquet has a dedicated reader and writer


Or I can use PutParquet



Create A Parquet Table and Query It









References

Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway What does it look like? Where Can I Run This Magic Engine: Private Cloud, Public Cloud, Hybrid Cloud, VM, Bare Metal, Single Node, Laptop, Raspberry Pi or anywhere you have a 1GB of RAM and some CPU is a good place to run a powerful graphical integration and dataflow engine.   You can also run MiNiFi C++ or Java agents if you want it even smaller. Sounds Too Powerful and Expensive: Apache NiFi is Open Source and can be run freely anywhere. For What Use Cases: Microservices, Images, Deep Learning and Machine Learning Models, Structured Data, Unstructured Data, NLP, Sentiment Analysis, Semistructured Data, Hive, Hadoop, MongoDB, ElasticSearch, SOLR, ETL/ELT, MySQL CDC, MySQL Insert/Update/Delete/Query, Hosting Unlimited REST Services, Interactive with Websockets, Ingesting Any REST API, Natively Converting JSON/XML/CSV/TSV/Logs/Avro/Parquet, Excel, PDF, Word Documents, Syslog, Kafka, JMS, MQTT, TCP

DevOps: Working with Parameter Contexts in Apache NiFi 1.11.4+

 DevOps:  Working with Parameter Contexts in Apache NiFi 1.11.4+ nifi list-param-contexts -u http://localhost:8080 -ot simple #   Id                                     Name             Description     -   ------------------------------------   --------------   -----------     1   3a801ff4-1f73-1836-b59c-b9fbc79ab030   backupregistry                   2   7184b9f4-0171-1000-4627-967e118f3037   health                           3   3a801faf-1f87-1836-54ba-3d913fa223ad   retail                           4   3a801fde-1f73-1836-957b-a9f4d2c9b73d   sensors                         #> nifi export-param-context -u http://localhost:8080 -verbose --paramContextId 3a801faf-1f87-1836-54ba-3d913fa223ad {   "name" : "retail",   "description" : "",   "parameters" : [ {     "parameter" : {       "name" : "allquery",       "description" : "",       "sensitive" : false,       "value"