Skip to main content

EdgeAI: Google Coral with Coral Environmental Sensors and TPU With NiFi and MiNiFi (Updated EFM)

EdgeAI:   Google Coral with Coral Environmental Sensors and TPU With NiFi and MiNiFi


Building MiNiFi IoT Apps with the new Cloudera EFM 


It is very easy to build a drag and drop EdgeAI application with EFM and then push to all your MiNiFi agents.


Cloudera Edge Management CEM-1.1.1
Download the newest CEM today!









NiFi Flow Receiving From MiNiFi Java Agent


In a cluster in my CDP-DC Cluster I consume Kafka messages sent from my remote NiFi gateway to publish alerts to Kafka and push records to Apache HBase and Apache Kudu.  We filter our data with Streaming SQL.


We can use SQL to route, create aggregates like averages, chose a subset of fields and limit data returned.   Using the power of Apache Calcite, Streaming SQL in NiFi is a game changer against Record Data Types including CSV, XML, Avro, Parquet, JSON and Grokable text.   Read and write different formats and convert when your SQL is done.   Or just to SELECT * FROM FLOWFILE to get everything.  



We can see this flow from Atlas as we trace the data lineage and provenance from Kafka topic.



We can search Atlas for Kafka Topics.



From coral Kafka topic to NiFi to Kudu.


Details on Coral Kafka Topic


Examining the Hive Metastore Data on the Coral Kudu Table


NiFi Flow Details in Atlas


Details on Alerts Topic
'


Statistics from Atlas





Example Web Camera Image



 Example JSON Record

[{"cputemp":59,"id":"20200221190718_2632409e-f635-48e7-9f32-aa1333f3b8f9","temperature":"39.44","memory":91.1,"score_1":"0.29","starttime":"02/21/2020 14:07:13","label_1":"hair spray","tempf":"102.34","diskusage":"50373.5 MB","message":"Success","ambient_light":"329.92","host":"coralenv","cpu":34.1,"macaddress":"b8:27:eb:99:64:6b","pressure":"102.76","score_2":"0.14","ip":"127.0.1.1","te":"5.10","systemtime":"02/21/2020 14:07:18","label_2":"syringe","humidity":"10.21"}]


Querying Kudu results in Hue


Pushing Alerts to Slack from NiFi





I am running on Apache NiFi 1.11.1 and wanted to point out a new feature.   Download flow:   Will download the highlighted flow/pgroup as JSON.




Looking at NiFi counters to monitor progress:

We can see how easy it is to ingest IoT sensor data and run AI algorithms on Coral TPUs.



Shell (coralrun.sh)


#!/bin/bash
DATE=$(date +"%Y-%m-%d_%H%M%S")
fswebcam -q -r 1280x720 /opt/demo/images/$DATE.jpg
python3 -W ignore /opt/demo/test.py --image /opt/demo/images/$DATE.jpg 2>/dev/null


Kudu Table DDL

https://github.com/tspannhw/table-ddl


Python 3 (test.py)


import time
import sys
import subprocess
import os
import base64
import uuid
import datetime
import traceback
import base64
import json
from time import gmtime, strftime
import math
import random, string
import time
import psutil
import uuid 
from getmac import get_mac_address
from coral.enviro.board import EnviroBoard
from luma.core.render import canvas
from PIL import Image, ImageDraw, ImageFont
import os
import argparse
from edgetpu.classification.engine import ClassificationEngine

# Importing socket library 
import socket 

start = time.time()
starttf = datetime.datetime.now().strftime('%m/%d/%Y %H:%M:%S')

def ReadLabelFile(file_path):
    with open(file_path, 'r') as f:
        lines = f.readlines()
    ret = {}
    for line in lines:
        pair = line.strip().split(maxsplit=1)
        ret[int(pair[0])] = pair[1].strip()
    return ret

# Google Example Code
def update_display(display, msg):
    with canvas(display) as draw:
        draw.text((0, 0), msg, fill='white')

def getCPUtemperature():
    res = os.popen('vcgencmd measure_temp').readline()
    return(res.replace("temp=","").replace("'C\n",""))

# Get MAC address of a local interfaces
def psutil_iface(iface):
    # type: (str) -> Optional[str]
    import psutil
    nics = psutil.net_if_addrs()
    if iface in nics:
        nic = nics[iface]
        for i in nic:
            if i.family == psutil.AF_LINK:
                return i.address
# /opt/demo/examples-camera/all_models  
row = { }
try:
#i = 1
#while i == 1:
    parser = argparse.ArgumentParser()
    parser.add_argument('--image', help='File path of the image to be recognized.', required=True)
    args = parser.parse_args()
    # Prepare labels.
    labels = ReadLabelFile('/opt/demo/examples-camera/all_models/imagenet_labels.txt')

    # Initialize engine.
    engine = ClassificationEngine('/opt/demo/examples-camera/all_models/inception_v4_299_quant_edgetpu.tflite')

    # Run inference.
    img = Image.open(args.image)

    scores = {}
    kCount = 1

    # Iterate Inference Results
    for result in engine.ClassifyWithImage(img, top_k=5):
        scores['label_' + str(kCount)] = labels[result[0]]
        scores['score_' + str(kCount)] = "{:.2f}".format(result[1])
        kCount = kCount + 1    

    enviro = EnviroBoard()
    host_name = socket.gethostname()
    host_ip = socket.gethostbyname(host_name)
    cpuTemp=int(float(getCPUtemperature()))
    uuid2 = '{0}_{1}'.format(strftime("%Y%m%d%H%M%S",gmtime()),uuid.uuid4())
    usage = psutil.disk_usage("/")
    end = time.time()
    row.update(scores)
    row['host'] = os.uname()[1]
    row['ip'] = host_ip
    row['macaddress'] = psutil_iface('wlan0')
    row['cputemp'] = round(cpuTemp,2)
    row['te'] = "{0:.2f}".format((end-start))
    row['starttime'] = starttf
    row['systemtime'] = datetime.datetime.now().strftime('%m/%d/%Y %H:%M:%S')
    row['cpu'] = psutil.cpu_percent(interval=1)
    row['diskusage'] = "{:.1f} MB".format(float(usage.free) / 1024 / 1024)
    row['memory'] = psutil.virtual_memory().percent
    row['id'] = str(uuid2)
    row['message'] = "Success"
    row['temperature'] = '{0:.2f}'.format(enviro.temperature)
    row['humidity'] = '{0:.2f}'.format(enviro.humidity)
    row['tempf'] = '{0:.2f}'.format((enviro.temperature * 1.8) + 32)    
    row['ambient_light'] = '{0}'.format(enviro.ambient_light)
    row['pressure'] = '{0:.2f}'.format(enviro.pressure)
    msg = 'Temp: {0}'.format(row['temperature'])
    msg += 'IP: {0}'.format(row['ip'])
    update_display(enviro.display, msg)
#    i = 2
except:
    row['message'] = "Error"
print(json.dumps(row)) 

Source Code:



Sensors / Devices / Hardware:

  • Humdity-HDC2010 humidity sensor
  • Light-OPT3002 ambient light sensor
  • Barometric-BMP280 barometric pressure sensor
  • PS3 Eye Camera and Microphone USB
  • Raspberry Pi 3B+
  • Google Coral Environmental Sensor Board
  • Google Coral USB Accelerator TPU

References:



Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

Advanced XML Processing with Apache NiFi 1.9.1

Advanced XML Processing with Apache NiFi 1.9.1 With the latest version of Apache NiFi, you can now directly convert XML to JSON or Apache AVRO, CSV or any other format supported by RecordWriters.   This is a great advancement.  To make it even easier, you don't even need to know the schema before hand.   There is a built-in option to Infer Schema. The results of an RSS (XML) feed converted to JSON and displayed in a slack channel. Besides just RSS feeds, we can grab regular XML data including XML data that is wrapped in a Zip file (or even in a Zipfile in an email, SFTP server or Google Docs). Get the Hourly Weather Observation for the United States Decompress That Zip  Unpack That Zip into Files One ZIP becomes many XML files of data. An example XML record from a NOAA weather station. Converted to JSON Automagically Let's Read Those Records With A Query and Convert the results to JSON Records

New Features of Apache NiFi 1.13.0

 New Features of Apache NiFi 1.13.0 Check it out :    https://twitter.com/pvillard31/status/1361569608327716867?s=27 Download today :   https://nifi.apache.org/download.html Release Note s:   https://cwiki.apache.org/confluence/display/NIFI/Release+Notes#ReleaseNotes-Version1.13.0 Migration :  https://cwiki.apache.org/confluence/display/NIFI/Migration+Guidance New Features ListenFTP UpdateHiveTable - Hive DDL changes -Hive Update Schema ie Data Drift ie Hive Schema Migration!!!! SampleRecord - different sampling approaches to records ( Interval Sampling,  Probabilistic Sampling,  Reservoir Sampling) CDC Updates Kudu updates AMQP and MQTT Integration Upgrades ConsumeMQTT - readers and writers added HTTP access to NiFi by default is now configured to accept connections to 127.0.0.1/localhost only.  If you want to allow broader access for some reason for HTTP and you understand the security implications you can still control that as always by changing the ' nifi.web.http.host' pr