Skip to main content

FLaNK: Using Apache Kudu As a Cache For FDA Updates

 FLaNK:  Using Apache Kudu As a Cache For FDA Updates


  1. InvokeHTTP:   We invoke the RSS feed to get our data.
  2. QueryRecord:   Convert RSS to JSON
  3. SplitJson:  Split one file into individual records.   (Should refactor to ForkRecord)
  4. EvaluateJSONPath:  Extract attributes you need.
  5. ProcessGroup for SPL Processing




We call and check the RSS feed frequently and we parse out the records from the RSS(XML) feed and check against our cache.   We use Cloudera's Real-Time Datahub with Apache Impala/Apache Kudu as our cache to see if we already received a record for that.   If it hasn't arrived yet, it will be added to the Kudu cache and processed.

SPL Processing

We use the extracted SPL to grab a detailed record for that SPL using InvokeHTTP.



We have created an Impala/Kudu table to cache this information with Apache Hue.




We use the LookupRecord to read from our cache.



If we don't have that value yet, we send it to the table for an UPSERT.


We send our raw data as XML/RSS to HDFS for archival use and audits.


We can see the results of our flow in Apache Atlas to see full governance of our solution.

So with some simple NiFi flow, we can ingest all the new updates to DailyMed and not reprocess anything that we already have.    

Resources



Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway What does it look like? Where Can I Run This Magic Engine: Private Cloud, Public Cloud, Hybrid Cloud, VM, Bare Metal, Single Node, Laptop, Raspberry Pi or anywhere you have a 1GB of RAM and some CPU is a good place to run a powerful graphical integration and dataflow engine.   You can also run MiNiFi C++ or Java agents if you want it even smaller. Sounds Too Powerful and Expensive: Apache NiFi is Open Source and can be run freely anywhere. For What Use Cases: Microservices, Images, Deep Learning and Machine Learning Models, Structured Data, Unstructured Data, NLP, Sentiment Analysis, Semistructured Data, Hive, Hadoop, MongoDB, ElasticSearch, SOLR, ETL/ELT, MySQL CDC, MySQL Insert/Update/Delete/Query, Hosting Unlimited REST Services, Interactive with Websockets, Ingesting Any REST API, Natively Converting JSON/XML/CSV/TSV/Logs/Avro/Parquet, Excel, PDF, Word Documents, Syslog, Kafka, JMS, MQTT, TCP

DevOps: Working with Parameter Contexts in Apache NiFi 1.11.4+

 DevOps:  Working with Parameter Contexts in Apache NiFi 1.11.4+ nifi list-param-contexts -u http://localhost:8080 -ot simple #   Id                                     Name             Description     -   ------------------------------------   --------------   -----------     1   3a801ff4-1f73-1836-b59c-b9fbc79ab030   backupregistry                   2   7184b9f4-0171-1000-4627-967e118f3037   health                           3   3a801faf-1f87-1836-54ba-3d913fa223ad   retail                           4   3a801fde-1f73-1836-957b-a9f4d2c9b73d   sensors                         #> nifi export-param-context -u http://localhost:8080 -verbose --paramContextId 3a801faf-1f87-1836-54ba-3d913fa223ad {   "name" : "retail",   "description" : "",   "parameters" : [ {     "parameter" : {       "name" : "allquery",       "description" : "",       "sensitive" : false,       "value"