Skip to main content

Cloudera SQL Stream Builder (SSB) - Update Your FLaNK Stack

Cloudera SQL Stream Builder (SSB) Released!

CSA 1.3.0 is now available with Apache Flink 1.12 and SQL Stream Builder!   Check out this white paper for some details.    You can get full details on the Stream Processing and Analytics available from Cloudera here.


This is awesome way to query Kafka topics with continuous SQL that is deployed to scalable Flink nodes in YARN or K8.   We can also easily define functions in JavaScript to enhance, enrich and augment our data streams.   No Java to write, no heavy deploys or build scripts, we can build, test and deploy these advanced streaming applications all from your secure browser interface.


References:



Example Queries:


SELECT location, max(temp_f) as max_temp_f, avg(temp_f) as avg_temp_f,
                 min(temp_f) as min_temp_f
FROM weather2 
GROUP BY location


SELECT HOP_END(eventTimestamp, INTERVAL '1' SECOND, INTERVAL '30' SECOND) as        windowEnd,
       count(`close`) as closeCount,
       sum(cast(`close` as float)) as closeSum, avg(cast(`close` as float)) as closeAverage,
       min(`close`) as closeMin,
       max(`close`) as closeMax,
       sum(case when `close` > 14 then 1 else 0 end) as stockGreaterThan14 
FROM stocksraw
WHERE symbol = 'CLDR'
GROUP BY HOP(eventTimestamp, INTERVAL '1' SECOND, INTERVAL '30' SECOND)
                                                         

SELECT scada2.uuid, scada2.systemtime, scada2.temperaturef, scada2.pressure, scada2.humidity, scada2.lux, scada2.proximity, 
scada2.oxidising,scada2.reducing , scada2.nh3, scada2.gasko,energy2.`current`,                   
energy2.voltage,energy2.`power`,energy2.`total`,energy2.fanstatus
FROM energy2 JOIN scada2 ON energy2.systemtime = scada2.systemtime
                                                 


SELECT symbol, uuid, ts, dt, `open`, `close`, high, volume, `low`, `datetime`, 'new-high' message, 
'nh' alertcode, CAST(CURRENT_TIMESTAMP AS BIGINT) alerttime 
FROM stocksraw st 
WHERE symbol is not null 
AND symbol <> 'null' 
AND trim(symbol) <> '' and 
CAST(`close` as DOUBLE) > 
(SELECT MAX(CAST(`close` as DOUBLE))
FROM stocksraw s 
WHERE s.symbol = st.symbol);



SELECT  * 
FROM statusevents
WHERE lower(description) like '%fail%'



SELECT
  sensor_id as device_id,
  HOP_END(sensor_ts, INTERVAL '1' SECOND, INTERVAL '30' SECOND) as windowEnd,
  count(*) as sensorCount,
  sum(sensor_6) as sensorSum,
  avg(cast(sensor_6 as float)) as sensorAverage,
  min(sensor_6) as sensorMin,
  max(sensor_6) as sensorMax,
  sum(case when sensor_6 > 70 then 1 else 0 end) as sensorGreaterThan60
FROM iot_enriched_source
GROUP BY
  sensor_id,
  HOP(sensor_ts, INTERVAL '1' SECOND, INTERVAL '30' SECOND)



SELECT title, description, pubDate, `point`, `uuid`, `ts`, eventTimestamp
FROM transcomevents


Source Code:



Example SQL Stream Builder Run

We login then build our Kafka data source(s), unless they were predefined.

Next we build a few virtual table sources for Kafka topics we are going to read from.   If they are JSON we can let SSB determine the schema for us.   Or we can connect to the Cloudera Schema Registry for it to determine the schema for AVRO data.

We can then define virtual table syncs to Kafka or webhooks.

We then run a SQL query with some easy to determine parameters and if we like the results we can create a materialized view.

























































Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

NiFi on Cloudera Data Platform Upgrade - April 2021

CFM 2.1.1 on CDP 7.1.6 There is a new Cloudera release of Apache NiFi now with SAML support. Apache NiFi 1.13.2.2.1.1.0 Apache NiFi Registry 0.8.0.2.1.1.0 See:    https://blog.cloudera.com/the-new-releases-of-apache-nifi-in-public-cloud-and-private-cloud/ https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-component-support.html https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-whats-new.html https://docs.cloudera.com/cfm/2.1.1/upgrade-paths/topics/cfm-upgrade-paths.html   For changes:    https://www.datainmotion.dev/2021/02/new-features-of-apache-nifi-1130.html Get your download on:  https://docs.cloudera.com/cfm/2.1.1/download/topics/cfm-download-locations.html To start researching for the future, take a look at some of the technical preview features around Easy Rules engine and handlers. https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-technical-preview.html Make sure you use the latest possible JDK 8 as there are some bugs out there.   Use a recent v

Advanced XML Processing with Apache NiFi 1.9.1

Advanced XML Processing with Apache NiFi 1.9.1 With the latest version of Apache NiFi, you can now directly convert XML to JSON or Apache AVRO, CSV or any other format supported by RecordWriters.   This is a great advancement.  To make it even easier, you don't even need to know the schema before hand.   There is a built-in option to Infer Schema. The results of an RSS (XML) feed converted to JSON and displayed in a slack channel. Besides just RSS feeds, we can grab regular XML data including XML data that is wrapped in a Zip file (or even in a Zipfile in an email, SFTP server or Google Docs). Get the Hourly Weather Observation for the United States Decompress That Zip  Unpack That Zip into Files One ZIP becomes many XML files of data. An example XML record from a NOAA weather station. Converted to JSON Automagically Let's Read Those Records With A Query and Convert the results to JSON Records