Skip to main content

FLiP-Py-Pi-GasThermal: Building an IoT Edge Application with Apache Pulsar and Python for TVOC and CO2 Ingest

 FLiP-Py-Pi-GasThermal


tags:  Apache Pulsar, Python, Raspberry Pi, Gas Sensor + Thermal Camera Sensors, Apache Flink, Trino/Presto SQL

ThermalCam

Sensors

  • Pimoroni BreakoutGarden: SGP30
    • Sensiron SGP30 TVOC and eCO2 sensor (datasheet)
    • TVOC sensing from 0-60,000 ppb (parts per billion)
    • CO2 sensing from 400 to 60,000 ppm (parts per million)
  • Pimoroni BreakoutGarden: MLX90640 Thermal Camera

HardWare

Architecture

designthis more sendmoredata

Build

bin/pulsar-admin topics create persistent://public/default/garden3

bin/pulsar-client consume "persistent://public/default/garden3" -s "garden3reader" -n 0

class Garden(Record):
    cpu = Float()
    diskusage = String()
    endtime = String()
    equivalentco2ppm = String()
    host = String()
    hostname = String()
    ipaddress = String()
    macaddress = String()
    memory = Float()
    rowid = String()
    runtime = Integer()
    starttime = String()
    systemtime = String()
    totalvocppb = String()
    ts = Integer()
    uuid = String()

----- got message -----
key:[garden3_uuid_yvs_20220306191528], properties:[], content:{
 "cpu": 0.0,
 "diskusage": "103496.6 MB",
 "endtime": "1646594128.2460103",
 "equivalentco2ppm": "  413",
 "host": "garden3",
 "hostname": "garden3",
 "ipaddress": "192.168.1.198",
 "macaddress": "dc:a6:32:32:98:20",
 "memory": 9.2,
 "rowid": "20220306191528_707b34d4-7299-4233-a495-d2d97393e834",
 "runtime": 0,
 "starttime": "03/06/2022 14:15:28",
 "systemtime": "03/06/2022 14:15:29",
 "totalvocppb": "    5",
 "ts": 1646594129,
 "uuid": "garden3_uuid_yvs_20220306191528"
}

presto> select * from pulsar."public/default"."garden3";
 cpu |  diskusage  |      endtime       | equivalentco2ppm |  host   | hostname |   ipaddress   |    macaddress     | memory |                        rowid                        | runtime |      
-----+-------------+--------------------+------------------+---------+----------+---------------+-------------------+--------+-----------------------------------------------------+---------+------
 6.5 | 103496.5 MB | 1646594650.7116666 |   418            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192410_197b6b0c-b86c-4191-9e9c-11777767825e |       0 | 03/06
 6.7 | 103496.5 MB | 1646594651.7441382 |   418            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192411_4dab3212-423b-46a9-ae39-b10eb363336d |       0 | 03/06
 1.3 | 103496.5 MB | 1646594652.7764313 |   421            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192412_d24a819b-4ca1-489a-9683-da48bc37185c |       0 | 03/06
 0.2 | 103496.5 MB | 1646594653.810233  |   421            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192413_f4e43177-2486-4a36-b27a-903028d6aacf |       0 | 03/06
 0.0 | 103496.5 MB | 1646594654.8467774 |   416            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192414_558d3db8-725a-46ec-ad1f-89f8067142f8 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594655.880628  |   420            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192415_1eeea533-7f7e-4945-a089-d4b2f8681e14 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594656.9145741 |   418            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192416_d7d8c6ea-2adf-4704-8f49-3108a7328f26 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594657.9489982 |   425            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192417_c71cbb6e-c59f-4855-84ae-b796fd3d7a76 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594658.9828157 |   420            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192418_c14204dd-4c1c-4e76-a272-8ddecd11a97c |       0 | 03/06
 0.0 | 103496.5 MB | 1646594660.0187812 |   420            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192419_c7583063-06e0-4601-806a-96619b6bb136 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594661.0531507 |   428            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192421_57e4a8ed-af6f-4dd0-b143-f29f1a211fdb |       0 | 03/06
 0.0 | 103496.5 MB | 1646594662.087301  |   421            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192422_cf2ce36e-c996-41ac-baec-db292cffdd37 |       0 | 03/06
 6.2 | 103496.5 MB | 1646594663.1214898 |   415            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192423_30b13428-ac2e-4929-b9f5-c4c3fbc3312a |       0 | 03/06
 6.5 | 103496.5 MB | 1646594664.1541135 |   424            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192424_d1517315-85fa-4923-b634-9b673c5b20ba |       0 | 03/06
 3.6 | 103496.5 MB | 1646594665.1890867 |   417            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192425_3984b0bc-a92e-4458-834c-e65259bb7a4d |       0 | 03/06
 0.0 | 103496.5 MB | 1646594666.221572  |   422            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192426_e0debd83-47e8-43f7-8ec5-cf0dbc27b87e |       0 | 03/06
 0.0 | 103496.5 MB | 1646594667.2555919 |   424            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192427_6ec920e7-56d2-4730-bddc-e18592cf1210 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594668.2893167 |   428            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192428_434b4458-6f89-4161-b967-f29796d8bf5d |       0 | 03/06
 0.0 | 103496.5 MB | 1646594669.3234618 |   426            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192429_5bb29c2e-d078-405d-b8f6-967ea4753b3f |       0 | 03/06
 0.0 | 103496.5 MB | 1646594670.359024  |   421            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192430_05b86f6b-4d28-497c-acd6-d14f7ce27157 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594671.392967  |   432            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192431_b7a2955a-6f39-4439-8eb9-27d7a2633836 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594672.4271743 |   426            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192432_29861384-fc30-4deb-bc1d-b7f2d27ef89d |       0 | 03/06
 0.0 | 103496.5 MB | 1646594673.4611707 |   424            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192433_25435335-39fe-4294-b913-95c63537a743 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594674.4951062 |   424            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192434_a52a90e8-b11c-467b-b87f-936432bc8988 |       0 | 03/06
 3.3 | 103496.5 MB | 1646594675.531778  |   436            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192435_48bab6a9-9f2e-443b-9fed-f096f6c24ebd |       0 | 03/06
 6.5 | 103496.5 MB | 1646594676.5642908 |   433            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192436_761f79dc-06f6-4ed3-8062-5227b6842b77 |       0 | 03/06
 6.2 | 103496.5 MB | 1646594677.5965276 |   421            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192437_6d8d49c9-0519-4825-b6b7-ed435e9fe747 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594678.6290672 |   423            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192438_a920872d-f152-4b18-94a7-b4dfe5641482 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594679.6629703 |   418            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192439_032ce574-10f6-4b50-b5e8-102b466af65a |       0 | 03/06
 0.0 | 103496.5 MB | 1646594680.699419  |   420            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192440_cde6f78a-d028-4f87-a95b-156bac0ee0c2 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594681.7338123 |   424            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192441_7400689a-6974-4ff2-a688-96c317d45d03 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594682.767776  |   417            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192442_46696fa7-295c-4fe6-bf49-8d8405e21cf5 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594683.8017883 |   420            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192443_4de9f79c-0169-49d6-b337-fb57dcb5cf7e |       0 | 03/06
 0.0 | 103496.5 MB | 1646594684.8360054 |   422            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192444_63081ac4-2c87-462d-bc16-ab506e9c6db2 |       0 | 03/06
 0.0 | 103496.5 MB | 1646594685.8720167 |   420            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192445_fee13e36-26c6-4f06-894c-8b96cb0f3bae |       0 | 03/06
 0.0 | 103496.5 MB | 1646594686.90594   |   431            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192446_8aaa423d-bfe3-43e8-8653-d554c2afb8d6 |       0 | 03/06
 0.8 | 103496.4 MB | 1646594687.939747  |   416            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192447_bfe339cd-3fb4-4d2a-b612-3a2363e1b83b |       0 | 03/06
 6.5 | 103496.4 MB | 1646594688.9728699 |   424            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192448_8809fc3e-75f8-4aca-a141-6e5d4872b0de |       0 | 03/06
 6.5 | 103496.4 MB | 1646594690.0051649 |   412            | garden3 | garden3  | 192.168.1.198 | dc:a6:32:32:98:20 |    9.2 | 20220306192449_0d0b4b62-0321-4bcd-952b-14607333d9f5 |       0 | 03/06

presto> desc pulsar."public/default"."garden3";
      Column       |   Type    | Extra |                                   Comment                                   
-------------------+-----------+-------+-----------------------------------------------------------------------------
 cpu               | real      |       | ["null","float"]                                                            
 diskusage         | varchar   |       | ["null","string"]                                                           
 endtime           | varchar   |       | ["null","string"]                                                           
 equivalentco2ppm  | varchar   |       | ["null","string"]                                                           
 host              | varchar   |       | ["null","string"]                                                           
 hostname          | varchar   |       | ["null","string"]                                                           
 ipaddress         | varchar   |       | ["null","string"]                                                           
 macaddress        | varchar   |       | ["null","string"]                                                           
 memory            | real      |       | ["null","float"]                                                            
 rowid             | varchar   |       | ["null","string"]                                                           
 runtime           | integer   |       | ["null","int"]                                                              
 starttime         | varchar   |       | ["null","string"]                                                           
 systemtime        | varchar   |       | ["null","string"]                                                           
 totalvocppb       | varchar   |       | ["null","string"]                                                           
 ts                | integer   |       | ["null","int"]                                                              
 uuid              | varchar   |       | ["null","string"]                                                           
 __partition__     | integer   |       | The partition number which the message belongs to                           
 __event_time__    | timestamp |       | Application defined timestamp in milliseconds of when the event occurred    
 __publish_time__  | timestamp |       | The timestamp in milliseconds of when event as published                    
 __message_id__    | varchar   |       | The message ID of the message used to generate this row                     
 __sequence_id__   | bigint    |       | The sequence ID of the message used to generate this row                    
 __producer_name__ | varchar   |       | The name of the producer that publish the message used to generate this row 
 __key__           | varchar   |       | The partition key for the topic                                             
 __properties__    | varchar   |       | User defined properties    
 

Presto/Trino gives us access to all that tasty meta data for each message/event/row/record/thing/data stuff. All with special names to help prevent collisions.

Meta Data

  • partition - if we have a partitioned topic, which partition does this message belong to.
  • event_time - you know what time it is! Timestamp in ms for event action.
  • publish_time - when was this message published to the topic?
  • message_id - unique id for this message
  • sequence_id - ordering information for this message
  • producer_name - who sent me this?
  • key - did you assign a key like I asked you to?
  • properties - all those extra fields you added around the payload

Spark Structured Streaming

val dfPulsar = spark.readStream.format("pulsar").option("service.url", "pulsar://localhost:6650").option("admin.url", "http://localhost:8080").option("topic", "persistent://public/default/garden3").load()
dfPulsar.printSchema()
val pQuery = dfPulsar.selectExpr("*").writeStream.format("parquet").option("truncate", false) .option("checkpointLocation", "/tmp/checkpoint").option("path", "/opt/demo/gasthermal").start()
    
pQuery.explain()
pQuery.awaitTermination()
pQuery.stop()

// can be "orc", "json", "csv", etc.

Spark

Show Me The Data

We can visualize data from Apache Pulsar by consuming it through the web sockets interface in a simple JQuery Single Page Web Application like below.

JavaScript

Example Parquet Files

pip3 install parquet-tools -U

parquet-tools inspect part-00000-b7e1f8dc-956d-4130-bc59-7b1435e41391-c000.snappy.parquet

############ file meta data ############
created_by: parquet-mr version 1.12.1 (build 2a5c06c58fa987f85aa22170be14d927d5ff6e7d)
num_columns: 23
num_rows: 1
num_row_groups: 1
format_version: 1.0
serialized_size: 5071


############ Columns ############
cpu
diskusage
endtime
equivalentco2ppm
host
hostname
ipaddress
macaddress
memory
rowid
runtime
starttime
systemtime
totalvocppb
ts
uuid
__key
__topic
__messageId
__publishTime
__eventTime
key
value

############ Column(cpu) ############
name: cpu
path: cpu
max_definition_level: 1
max_repetition_level: 0
physical_type: FLOAT
logical_type: None
converted_type (legacy): NONE

############ Column(diskusage) ############
name: diskusage
path: diskusage
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(endtime) ############
name: endtime
path: endtime
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(equivalentco2ppm) ############
name: equivalentco2ppm
path: equivalentco2ppm
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(host) ############
name: host
path: host
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(hostname) ############
name: hostname
path: hostname
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(ipaddress) ############
name: ipaddress
path: ipaddress
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(macaddress) ############
name: macaddress
path: macaddress
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(memory) ############
name: memory
path: memory
max_definition_level: 1
max_repetition_level: 0
physical_type: FLOAT
logical_type: None
converted_type (legacy): NONE

############ Column(rowid) ############
name: rowid
path: rowid
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(runtime) ############
name: runtime
path: runtime
max_definition_level: 1
max_repetition_level: 0
physical_type: INT32
logical_type: None
converted_type (legacy): NONE

############ Column(starttime) ############
name: starttime
path: starttime
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(systemtime) ############
name: systemtime
path: systemtime
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(totalvocppb) ############
name: totalvocppb
path: totalvocppb
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(ts) ############
name: ts
path: ts
max_definition_level: 1
max_repetition_level: 0
physical_type: INT32
logical_type: None
converted_type (legacy): NONE

############ Column(uuid) ############
name: uuid
path: uuid
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(__key) ############
name: __key
path: __key
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: None
converted_type (legacy): NONE

############ Column(__topic) ############
name: __topic
path: __topic
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(__messageId) ############
name: __messageId
path: __messageId
max_definition_level: 1
max_repetition_level: 0
physical_type: BYTE_ARRAY
logical_type: None
converted_type (legacy): NONE

############ Column(__publishTime) ############
name: __publishTime
path: __publishTime
max_definition_level: 1
max_repetition_level: 0
physical_type: INT96
logical_type: None
converted_type (legacy): NONE

############ Column(__eventTime) ############
name: __eventTime
path: __eventTime
max_definition_level: 1
max_repetition_level: 0
physical_type: INT96
logical_type: None
converted_type (legacy): NONE

############ Column(key) ############
name: key
path: __messageProperties.key_value.key
max_definition_level: 2
max_repetition_level: 1
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

############ Column(value) ############
name: value
path: __messageProperties.key_value.value
max_definition_level: 3
max_repetition_level: 1
physical_type: BYTE_ARRAY
logical_type: String
converted_type (legacy): UTF8

Flink

CREATE CATALOG pulsar WITH (
   'type' = 'pulsar',
   'service-url' = 'pulsar://pulsar1:6650',
   'admin-url' = 'http://pulsar1:8080',
   'format' = 'json'
);

USE CATALOG pulsar;

SHOW TABLES;

Flink SQL> describe garden3;
+------------------+--------+------+-----+--------+-----------+
|             name |   type | null | key | extras | watermark |
+------------------+--------+------+-----+--------+-----------+
|              cpu |  FLOAT | true |     |        |           |
|        diskusage | STRING | true |     |        |           |
|          endtime | STRING | true |     |        |           |
| equivalentco2ppm | STRING | true |     |        |           |
|             host | STRING | true |     |        |           |
|         hostname | STRING | true |     |        |           |
|        ipaddress | STRING | true |     |        |           |
|       macaddress | STRING | true |     |        |           |
|           memory |  FLOAT | true |     |        |           |
|            rowid | STRING | true |     |        |           |
|          runtime |    INT | true |     |        |           |
|        starttime | STRING | true |     |        |           |
|       systemtime | STRING | true |     |        |           |
|      totalvocppb | STRING | true |     |        |           |
|               ts |    INT | true |     |        |           |
|             uuid | STRING | true |     |        |           |
+------------------+--------+------+-----+--------+-----------+
16 rows in set

select equivalentco2ppm, totalvocppb, cpu, starttime, systemtime, ts, cpu, diskusage, endtime, memory, uuid from garden3;

select max(equivalentco2ppm) as MaxCO2, max(totalvocppb) as MaxVocPPB from garden3;


// TODO

Add your own table

  publishTime TIMESTAMP(3) METADATA,
  WATERMARK FOR publishTime AS publishTime - INTERVAL '5' SECOND
  

Flink Flink2 Flink3

Apache NiFi (FLiPN)

  • Choose a processor from the palette

ShowNiFi

  • Consume messages from Apache Pulsar

ConsumePulsar

  • Full Apache NiFi Data Flow with Apache Pulsar and MongoDB

Flow

MongoDB

mongo -u username1 -p password1 --authenticationDatabase admin pulsar1:27017/inventory

show databases

db.createCollection("garden3")

show collections

db.garden3.find().pretty()

{
        "_id" : ObjectId("622f7315f99b9a338d60592f"),
        "cpu" : 0,
        "diskusage" : "101615.9 MB",
        "endtime" : "1647276083.2033532",
        "equivalentco2ppm" : "  407",
        "host" : "garden3",
        "hostname" : "garden3",
        "ipaddress" : "192.168.1.199",
        "macaddress" : "dc:a6:32:32:98:20",
        "memory" : 8.8,
        "rowid" : "20220314164123_0e19c5e6-45f5-405e-bd93-9aed05b37630",
        "runtime" : 0,
        "starttime" : "03/14/2022 12:41:23",
        "systemtime" : "03/14/2022 12:41:24",
        "totalvocppb" : "  5",
        "ts" : 1647276084,
        "uuid" : "garden3_uuid_xrl_20220314164123"
}

mongo mongoquery

References

Additional Heat Images

hot hot2 more3 doesanyonereadthis4

Popular posts from this blog

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice

Ingesting Drone Data From DJII Ryze Tello Drones Part 1 - Setup and Practice In Part 1, we will setup our drone, our communication environment, capture the data and do initial analysis. We will eventually grab live video stream for object detection, real-time flight control and real-time data ingest of photos, videos and sensor readings. We will have Apache NiFi react to live situations facing the drone and have it issue flight commands via UDP. In this initial section, we will control the drone with Python which can be triggered by NiFi. Apache NiFi will ingest log data that is stored as CSV files on a NiFi node connected to the drone's WiFi. This will eventually move to a dedicated embedded device running MiniFi. This is a small personal drone with less than 13 minutes of flight time per battery. This is not a commercial drone, but gives you an idea of the what you can do with drones. Drone Live Communications for Sensor Readings and Drone Control You must connect t

NiFi on Cloudera Data Platform Upgrade - April 2021

CFM 2.1.1 on CDP 7.1.6 There is a new Cloudera release of Apache NiFi now with SAML support. Apache NiFi 1.13.2.2.1.1.0 Apache NiFi Registry 0.8.0.2.1.1.0 See:    https://blog.cloudera.com/the-new-releases-of-apache-nifi-in-public-cloud-and-private-cloud/ https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-component-support.html https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-whats-new.html https://docs.cloudera.com/cfm/2.1.1/upgrade-paths/topics/cfm-upgrade-paths.html   For changes:    https://www.datainmotion.dev/2021/02/new-features-of-apache-nifi-1130.html Get your download on:  https://docs.cloudera.com/cfm/2.1.1/download/topics/cfm-download-locations.html To start researching for the future, take a look at some of the technical preview features around Easy Rules engine and handlers. https://docs.cloudera.com/cfm/2.1.1/release-notes/topics/cfm-technical-preview.html Make sure you use the latest possible JDK 8 as there are some bugs out there.   Use a recent v

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway

Using Apache NiFi in OpenShift and Anywhere Else to Act as Your Global Integration Gateway What does it look like? Where Can I Run This Magic Engine: Private Cloud, Public Cloud, Hybrid Cloud, VM, Bare Metal, Single Node, Laptop, Raspberry Pi or anywhere you have a 1GB of RAM and some CPU is a good place to run a powerful graphical integration and dataflow engine.   You can also run MiNiFi C++ or Java agents if you want it even smaller. Sounds Too Powerful and Expensive: Apache NiFi is Open Source and can be run freely anywhere. For What Use Cases: Microservices, Images, Deep Learning and Machine Learning Models, Structured Data, Unstructured Data, NLP, Sentiment Analysis, Semistructured Data, Hive, Hadoop, MongoDB, ElasticSearch, SOLR, ETL/ELT, MySQL CDC, MySQL Insert/Update/Delete/Query, Hosting Unlimited REST Services, Interactive with Websockets, Ingesting Any REST API, Natively Converting JSON/XML/CSV/TSV/Logs/Avro/Parquet, Excel, PDF, Word Documents, Syslog, Kafka, JMS, MQTT, TCP